Structural Data Parallel Neural Network Simulation
نویسنده
چکیده
In this paper a novel approach for the data parallel simulation of neural networks on general purpose parallel machines is presented. We deene this new neural network simulation methodology algorithmically, and call it the 'Structural Data Parallel' approach. This approach is based on the Single-Program-Multiple-Data (SPMD) programming model and utilizes the highly specialized programming capabilities of high performance languages (like HPF, Vienna FORTRAN, etc.) for the parallelization process. The development process of the simulation system is reduced to the simple design of a sequential program, which is attributed with data distribution information. Thus the diicult task of physical parallelization is shifted to the programming environment and the compiler of the high performance language. An analysis of the runtime behavior of parallel neural network simulations developed according to this new scheme is presented, which justiies the eeciency of the new approach.
منابع مشابه
Navigation of a Mobile Robot Using Virtual Potential Field and Artificial Neural Network
Mobile robot navigation is one of the basic problems in robotics. In this paper, a new approach is proposed for autonomous mobile robot navigation in an unknown environment. The proposed approach is based on learning virtual parallel paths that propel the mobile robot toward the track using a multi-layer, feed-forward neural network. For training, a human operator navigates the mobile robot in ...
متن کاملUsing Neural Network to Control STATCOM for ImprovingTransient Stability
FACTS technology has considerable applications in power systems, such as; improving the steady stateperformance, damping the power system oscillations, controlling the power flow, and etc. STATCOM is oneof the most important FACTS devices used in the parallel compensation, enhancing transient stability andetc. Since three phase fault is widespread in power systems, in this paper STATCOM is used...
متن کاملSimulation and Prediction of Wind Speeds: A Neural Network for Weibull
Abstract. Wind as a resource of renewable energy has obtained an important share of the energy market already. Therefore simulation and prediction of wind speeds is essential for both, for engineers and energy traders. In this paper we analyze the surface wind speed data from three prototypic locations: coastal region (Rotterdam), undulating forest landscape few 100 m above sea level(Kassel), ...
متن کاملDetermination of Lateral load Capacity of Steel Shear Walls Based on Artificial Neural Network Models
In this paper, load-carrying capacity in steel shear wall (SSW) was estimated using artificial neural networks (ANNs). The SSW parameters including load-carrying capacity (as ANN’s target), plate thickness, thickness of stiffener, diagonal stiffener distance, horizontal stiffener distance and gravity load (as ANN’s inputs) are used in this paper to train the ANNs. 144 samples data of each of th...
متن کاملThe efficiency of Artificial Neural Network, Neuro-Fuzzy and Multivariate Regression models for runoff and erosion simulation using rainfall simulator
1- INTRODUCTION According to the complexity of environmental factors related to erosion and runoff, correct simulation of these variables find importance under rain intensity domain of watershed areas. Although modeling of erosion and runoff by Artificial Neural Network and Neuro-Fuzzy based on rainfall-runoff and discharge-sediment models were widely applied by researchers, scrutinizing Arti...
متن کامل